Go to the source code of this file.
|
function | generatePRRFile (filePath, targetName) s2p |
|
| fprintf (prrFile, "%d", 50) |
|
| fprintf (prrFile, "\n%g %g\n", real(S(a, b).remainder), imag(S(a, b).remainder)) |
|
| fprintf (prrFile, "%g %g", real(S(a, b).poles(1)), imag(S(a, b).poles(1))) |
|
end | fprintf (prrFile, "\n%g %g", real(S(a, b).residues(1)), imag(S(a, b).residues(1))) |
|
|
| freqSamples = s2p.Frequencies * 1e-9 |
|
| fitData = struct("poles", {}, "residues", {}, "remainder", {}, "proportional", {}) |
|
| S = repmat( fitData, s2p.NumPorts, s2p.NumPorts ) |
|
| prrFile = fopen( targetName, 'w' ) |
|
Find a complex rational model for freq domain data for | a |
|
for | i |
|
◆ fprintf() [1/4]
◆ fprintf() [2/4]
◆ fprintf() [3/4]
◆ fprintf() [4/4]
◆ generatePRRFile()
function generatePRRFile |
( |
filePath |
, |
|
|
targetName |
|
|
) |
| |
Find a complex rational model for freq domain data for a |
Initial value:= 1 : 1 : s2p.NumPorts
for b = 1 : 1 : s2p.NumPorts
[ S(a, b).poles, S(a, b).residues, S(a, b).remainder, S(a, b).proportional ] = findComplexRationalApproximation(
freqSamples, squeeze(s2p.Parameters(
a,
b, : )) )
Find a complex rational model for freq domain data for a
Definition at line 13 of file generatePRRFile.m.
◆ fitData
◆ freqSamples
freqSamples = s2p.Frequencies * 1e-9 |
Initial value:
Undo scaling of outgoing poles
fprintf(prrFile, "%d", 50)
Definition at line 19 of file generatePRRFile.m.
◆ prrFile
prrFile = fopen( targetName, 'w' ) |
S = repmat( fitData, s2p.NumPorts, s2p.NumPorts ) |