JUK1
getResidues.m File Reference

Go to the source code of this file.

Functions

Using these poles make (s-a) terms %Each row corresponds to a partial fraction model at one frequency Asys
 
wSimFreqs ()
 
 res (:, 2)
 
 res (:, 3)
 
 res (:, 4)
 
Determine residues for sigma (s) function %ctilde
 

Variables

 function [residues, ctilde, Asim, residual]
 
Number of poles to use in fit numPoles = length(poles)
 
Turn this into a matrix
 
Turn this into a with identical frequencies along the rows Sk = 1j*repmat(wSimFreqs(:),1,numPoles)
 
anorm are the complex starting current poles Here we create a matrix with identical poles down the columns P = repmat(poles,numFreqs,1)
 
To ensure residues come in perfect conjugate pairs
 
To ensure residues come in perfect conjugate we form A as A = [ANorm + AConj, 1j*ANorm - 1j*AConj]
 
How many vectors are we fitting numVec = size(freqData,1)*size(freqData,2)
 
 numVar = numPoles + 2
 
The partial fraction expansions consits of terms
 
 AsimFull = Asim
 
 freqDataFull = freqData
 
 b = freqData(:)
 
Obtain iteration resiudes for model x = A\b
 
 res = x(1:numVar)
 
 residues = res(:)
 
 ctilde = x(end/2+2:end)
 
 residual = norm(A*x-b)
 
Check fit H = simPoleResidueRemainder(wSimFreqs/2*pi, poles, residues)
 

Function Documentation

◆ make()

Using these poles make ( s a)

◆ res() [1/3]

res ( ,
 
)

◆ res() [2/3]

res ( ,
 
)

◆ res() [3/3]

res ( ,
 
)

◆ sigma()

Determine residues for sigma ( s  )

◆ wSimFreqs()

: wSimFreqs ( )
virtual

Variable Documentation

◆ A

Add the partial fraction terms for the sigma function A = [ANorm + AConj, 1j*ANorm - 1j*AConj]

Definition at line 28 of file getResidues.m.

◆ AsimFull

AsimFull = Asim

Definition at line 40 of file getResidues.m.

◆ b

b = freqData(:)

Definition at line 47 of file getResidues.m.

◆ ctilde

ctilde = x(end/2+2:end)

Definition at line 59 of file getResidues.m.

◆ freqDataFull

freqDataFull = freqData

Definition at line 41 of file getResidues.m.

◆ function

function[residues, ctilde, Asim, residual]
Initial value:
= getResidues(poles, freqData, wSimFreqs)
%GETRESIDUES Determines the residues of a rational model fit to frequency
%domain matrix (note that this is true VectorFitting)
% This function is for use with vector fitting. It simulates a rational
% model (in adjusted partial fraction form) and determines the resdiues
% required to fit a function signma(s) using least squares. This can then
% in turn be used to update the poles of the rational model for the next
% iteration.
% Total number of frequency points
numFreqs = length(wSimFreqs)
Undo scaling of outgoing poles
Turn this into a with identical frequencies along the rows s
Find a complex rational model for freq domain data for a
: wSimFreqs()
residues
Definition: getResidues.m:55
Turn this into a matrix
Definition: getResidues.m:16

Definition at line 1 of file getResidues.m.

◆ H

Check fit H = simPoleResidueRemainder(wSimFreqs/2*pi, poles, residues)

Definition at line 64 of file getResidues.m.

◆ matrix

Turn this into a matrix

Definition at line 16 of file getResidues.m.

◆ numPoles

Number of poles to use in fit numPoles = length(poles)

Definition at line 14 of file getResidues.m.

◆ numVar

numVar = numPoles + 2

Definition at line 32 of file getResidues.m.

◆ numVec

How many vectors are we fitting numVec = size(freqData,1)*size(freqData,2)

Definition at line 31 of file getResidues.m.

◆ P

anorm are the complex starting current poles Here we create a matrix with identical poles down the columns P = repmat(poles,numFreqs,1)

Definition at line 21 of file getResidues.m.

◆ pairs

To ensure residues come in perfect conjugate pairs

Definition at line 27 of file getResidues.m.

◆ res

res = x(1:numVar)

Definition at line 51 of file getResidues.m.

◆ residual

residual = norm(A*x-b)

Definition at line 61 of file getResidues.m.

◆ residues

residues = res(:)

Definition at line 55 of file getResidues.m.

◆ Sk

Turn this into a with identical frequencies along the rows Sk = 1j*repmat(wSimFreqs(:),1,numPoles)

Definition at line 17 of file getResidues.m.

◆ terms

The partial fraction expansions consits of terms

Definition at line 34 of file getResidues.m.

◆ x

Obtain iteration resiudes for model x = A\b

Definition at line 50 of file getResidues.m.